


Abstract— Although there are more and more things

personal robots can do for us at home, they are unable

to accomplish work of relatively large scale, such as

assembling furniture. In order for a robot to do that,

lots of work need to be done for planning, vision,

localizing, controlling, etc. In this paper, we focus on the

planning part.

Our robot only needs to know where the individual

pieces we want it to assemble are located initially as well

as where they should be after assembled. Our algorithm

can be divided into three distinct parts. First, the robot

has to take the final positions of the objects and

compute the correct order to move them. Next, given the

order, we plan the path from initial and final locations

for each object. Lastly, we take the paths and move the

robot’s arms accordingly. For the experiments, we use

the Willow Garage PR2 (Personal Robot 2) and all

simulations are done in the Robot Operating System

(ROS).

I. INTRODUCTION

CCORDING to a study by ABI Research, the personal

robotics market will be worth $15 billion by 2015.

There are many ways in which personal robots can help us

on a daily basis, including floor cleaning, laundry folding,

dish washing, food- and medicine-dispensing, surveillance,

etc. As Bill Gates stated in 2007, there would be “a robot in

every home” in the near future.

In addition to the tasks mentioned in the previous

paragraph that a personal robot can help us, one unique task

that has not really been touched upon is to make a robot

assemble things for human beings, such as tables, desks,

bed, Ikea bookshelves, etc. Imagine that you just moved to

a new apartment and bought a lot of unassembled furniture

from a store, say Ikea, and you are so tired after such a busy

day. Would it be nice if there is a robot that can assemble

the furniture while you can just relax? The ultimate goal is

to design a personal robot that can assemble anything.

Many things need to be done in order to reach the ultimate

goal. For this particular project, our focus is mainly on

planning, which involves planning for what sequence the

robot should move and assemble the objects, planning for

which path to take to move the individual object to its

desired location, as well as planning for how to move the

arms.



The whole procedure of assembling can be very complex.

There are two major challenges: finding out the sequence of

assembling and the trajectory of arms to move objects. For

the first challenge, many factors have to be taken into

account, such as gravity, and constraints occurred by other

objects. Sometimes, even human beings need guidance to

figure out sequence of assembling. The second challenge is

caused by limitation of robot itself (some pose is impossible

to reach) and also the collision with environment.

Sometimes, these two issues have to be considered together,

because the order of movements can limit the number of

possible trajectory and in the other hand, the configuration

of arm can make some order impossible to achieve.

However in this project, we are only trying to solve relative

simple and general cases to start with.

We build a framework for assembling, which consists of

three parts, Task Planning, Object Planning and Arm

Planning. The first part is to solve the first challenge, and

the latter two are for the second one. In the rest of the

report, we will first show some prior work, and then some

problems we encountered in this project. In algorithm part,

we will describe the whole frame work in detail, and then

give the result of simulation. Finally, we will analysis the

result and also discuss possible future work.

II. PREVIOUS WORK

Not much work related to assembling for personal robots

has been done previously. However, there are several

topics on planning that we take ideas from. We look at

different planners such as RRT, KPIECE, SBL, CHOMP,

etc. A third-party software package called MSL (Motion

Strategy Library, which has existing implementation of

different versions of RRT planners) is used in our

implementation.

III. PROBLEM ENCOUNTERED

As mentioned in the previous section, not much work had

been done previously on assembling. None of us had too

much experience in robotics, especially planning. A lot of

our time was actually spent on learning, reading papers,

researching, and how to format the problem instead of how

to solve the problem itself.

Probably the biggest issue for our project was getting us

familiar with and actually able to use the Robot Operating

A

Super Assembling Arms
Yun Jiang, Nan Xiao, and Hanpin Yan

{yj229, nx27, hy95}@cornell.edu

System (ROS). This was taking tens of hours. We first had

troubles installing ROS on our computers, due to the fact

that the installation guide on the ROS website was not too

clear. We then had issues running the pr2_gazebo package

in ROS. Only the computers that have some specific models

of graphics cards were able to run the pr2_gazebo package

with no problem. After we understood the issue and solved

it by ordering and installing new graphics cards on the

computers, a lot of time had already been passed by. In

additional to these technical issues, ROS itself was very

difficult to use. For example, ROS had very low precision

for the coordinates in simulation. Sometimes the robot

failed to move the objects to their desired location due to

this poor precision. Also, the documentation for different

ROS packages on the website was not very straightforward

to understand either, so lots of our time was devoted on

trials and errors.

IV. ALGORITHM

Since our focus is on planning, we assume the robot has

full knowledge about the environment, and does not take in

sensor data. For the planning part, first the robot needs to

know how the furniture it is trying to assemble looks like at

its final state (ex. a bookshelf) and find out the best

sequence to move the individual pieces. This is called Task

Planning. Then, given the sequence, it plans a plausible

path for each object. We call the above step Object

Planning. The last step is called Arm Planning, which is

when the robot finds out the grasping point for the objects

and moves them to their final state.

Figure 4.1 shows the flowchart of our system.

Figure 4.1 Flowchart of planning algorithm

A. Inputs

We require the object file itself and its initial and goal

states. The object file contains the coordinates of the

vertices of the triangular meshes that are used to represent

an object’s surface. The initial and goal states contain the

location (x, y, and z) and the orientation (alpha, beta, and

gamma) of the initial and goal positions respectively. We

also require an initial obstacle file which is also in mesh

format. The initial obstacle file tells the robot where the

obstacles are prior to doing the assembling task.

Figure 4.2 shows how we organize input files.

Figure 4.2 Input files in a folder for a task

B. Task Planning

The task planner computes the sequence of the objects

that need to be moved for an assembling task.

 For each object, task planner takes its mesh data, initial

state and final state as input. If necessary, the planner finds

the order to disassemble the objects from the initial state

first and put them onto a predefined parking lot. We call

this the preparing stage. Then in building stage, the planner

finds the order to assemble the objects to final state.

The planner uses the lowest corner point of an object to

represent that particular object during planning. In most of

the cases, the planner simply outputs a sequence of objects

based on their lowest corner coordinates, from bottom to

top, which means the robot needs to put down the bottom

objects prior to putting down the top objects. However, for

some cases such as a bookshelf, we need to assemble the

outer part first and then insert the boards in the middle into

the shelf. Here, we introduce the idea of an “inner” object.

An object is defined as “inner” if its lowest point is not

directly above another object. The planner takes care of the

“inner” objects at the end.

Figure 4.3 shows the flowchart of the task planner.

Figure 4.3 Flowchart of Task Planner

C. Object Planning

The object planner computes path from initial location to

final location for each object. The path is constructed by a

set of nodes, which represented by coordinate, on the path.

The planner takes the order computed by the task

planner, as well as the initial obstacles existed in the

environment as its input. For each object, MSL (Motion

Strategy Library, which contains a set of different planners)

is used to plan for its path. The object that is already moved

to its final location is considered also as an obstacle and

therefore it is added to the initial obstacle file. The planner

smoothes the path by interpolation, and outputs a proper

path to move the object from initial location to final

location without hitting obstacles for each object.

Figure 4.4 shows the flowchart of this planner.

Figure 4.4 Flowchart of Object Planner

D. Arm Planning

Now, given the path for moving an object, we need to

find out the ultimate trajectory for the arms. The given path

is known to be collision-free, thus if the arms can move

along the same path, then the object will not collide with

others. So the goal for this part is to fit the trajectory to the

given path. It is natural that during the moving, the relative

position of hands to the object won't change. Therefore it is

reasonable to assume the grasping points of the object are

always fixed. Thus, given the path of object, the path of

grasping points is given as well. As a result, we can simply

find the angles of all the joints of the arm (then an arm

configuration is uniquely defined) for each points in the

path using IK (inverse kinematics) solver, and then use

simple interpolation to link the points to obtain the

trajectory.

More specifically, the arm planner takes in the path

outputted by the object planner and first transforms it into

path of grasping point (if two arms cooperate together, then

two paths will be calculated respectively). Then it calculates

the IK solution for each grasping point, and last, links them

together to get the trajectory and send it the arm controller.

Figure 4.5 describes how this planner works.

Figure 4.5 Flowchart of Arm Planner

V. SIMULATION AND RESULTS

A. Simulation Setup

Because we do not have access to a real PR2 robot, we

evaluate our algorithm in simulations. We build several

different scenes to test our algorithm, from the easiest (3

blocks) to the most difficult (assembling a table with four

legs and two boards). For each simulation scenario, we first

generate objects' 3D mesh data using tools such as

AutoCAD, and then design the scene including all the initial

and goal positions and orientations of the objects, as well as

their grasping points. The complexity of our simulations is

limited by robot itself and ROS in several ways. First, since

in this project we focus on arms rather than moving the

whole body, the robot has limited reaching space which is

less than the square of the length of its arms. Second, in

terms of unit in ROS, the gripper can open as much as 0.09,

which means the robot can only grab very thin board or

cylinder-shape objects. This limitation makes moving large

blocks almost impossible. Third, the usual tolerance of

precision is 0.02~0.05, so it will fail on complicated

assembling cases, like screwing or picking up small pieces.

Also, because the front part of grippers is flat, it is hard for

the robot to pick up things on the ground unless they either

stand up or are aligned along the edge of tables. After input

data is ready, we load the robot and the objects into gazebo

(ROS simulating environment), and run the pipeline to get

the order and paths for objects and trajectories for arms,

and then control PR2 to finish the task.

B. Assembling a Table

In this task, the robot is given a task to assemble a table

with four legs, one top board, and one base.

Figure 5.1

As we can see in Figure 5.1, in the beginning, the base

board is placed on the ground in front of the robot so that

the robot can reach the furthest corner of it. And there are 2

legs on each side of the robot. The top board is on the right

side of the robot. We put it vertically instead of horizontally

because it is easier to be picked up. The target table is

shown in Figure 5.2, where the four legs are inserted into

four deep holes in the pedestal, and also the top board is

placed flat and stably above legs.

Figure 5.2

According to our task planner, the assembling order is

two legs in two further holes first, then two nearer ones, and

the top board for the last. This order is reasonable.

However, whether the task will be successful also depends

on the other two parts. Especially, paths of each object

should be feasible for the robot, although there are an

infinite number of collision-free paths to move them.

In object planning, we used RCRRTExtExt from the

MSL software package as the planner. Generally, for the

four sticks, the simplest path is first lift it from the ground,

move it right above the hole, and then put it down into the

hole. And we do not need to rotate them in the process. But

for the top board, we need to rotate it and the time for

rotation is crucial due to the fact that rotation needs to be

done when there is enough space and the four legs will not

be on the way. The resulting path is lift it a little bit and

then rotate it and move it horizontally to the place slightly

higher than the goal position and eventually put it down.

We can see that all paths are simple and short. They don't

contain any redundant rotation or detour. Although

originally they have some zigzag parts, we take care of it by

smoothing the paths. Another thing need to be noticed is for

the last board, we use only one arm to move it. But one can

tell that a better way to move it is using two arms which will

make movement more stable. However, due to the limited

moving space for the left arm, it cannot reach the top board

and therefore using right arm alone is the only solution.

In the last part, arm planning, as mentioned earlier, we

use IK to find exact position of each joint for each point in

the trajectory. Although the trajectory is usually smooth

because points are close to enough to each other, sometimes

angles given by IK might jump from -π to π, and somehow

arm controller would make the arm rotate 360 degree to

reach the goal. We have solved this simply by increasing or

decreasing the second angle until it is closest to the first

one.

The simulation is not successful for the first time. This is

caused by some precision issues. Because IK solver can be

very sensitive to the position, if the object is moved by even

0.1 unit, this can cause no IK solution being found. Thus,

we actually spend a lot of time making sure that the IK

solutions can be found for all points. Even all trajectories

are found, during the manipulation, sticks sometimes could

not be inserted into the hole because it touched the edge.

Thus we make the hole a little wider than the stick, but also

deeper to hold it tight. Figure 5.3 shows one screen-shot of

the procedure moving legs.

Figure 5.3

An even severer problem is that when we are moving the

last top board using right arm, it is very unstable and the

board is swinging around all the time. As you can see from

the video we submitted, although the arm can move to the

goal position for the last part, the board itself is not in the

correct place because it slips from the gripper a little, as

shown in Figure 5.4.

Figure 5.4

In summary, the order, paths outputted by planner are

correct, but IK solver in ROS is more sensitive and unstable

than we expected, which makes simulation unnecessarily

harder. We think this issue also reflects our algorithm is not

robust enough. If we consider more possible candidates

rather than just one path for each object, and if we can

adjust the path in real time, simulation will be more

successful.

VI. LIMITATION AND FUTURE WORK

 As you can see, our scale is relatively small right now.

There are constraints such that objects cannot be too heavy

for a robot to lift with one of its arms and they need to be

placed within reachable distance from the robot. The small

scale is partly due to the fact that we are mainly focusing on

planning and have not spent a large amount of time dealing

with other issues such as moving the robots around and

lifting very heavy objects. In the future, we can move the

robot around and ask it to pick up objects from several

locations and finally assemble them together.

Our task planner can only deal with relatively small

amount of cases. We can also enhance its algorithm to make

it more general and robust so that it will be able to deal with

more corner cases. After all, our ultimate goal is to make

our robot capable of assembling anything.

Path planning is done by using the RRT planner in the

MSL package. Currently we have issues that the path

outputted by the planner is not smooth enough, even after

the interpolation. In the future we can cooperate with Ian

Baldwin from MSL to have a better idea about how to use

the planner and how to improve it, if possible. A clear and

smooth path is vital to the success of the project because it

can also make the arm planning much easier.

As mentioned earlier, we want to move the robot around.

This can help us in planning for the movement of the arms

because there will be less constraints for us if the robot is

able to move itself. For the heavier objects, we will want

the robot to actually use both of its arms to lift and move

them. The benefit of using both arms is that it will hold the

objects tighter so that more accuracy can be achieved.

REFERENCES

[1] SVN Repository for our projects. Available:

https://forge.cornell.edu/svn/repos/src/planning

[2] Robot Operating System (ROS). [Online]. Available:

http://www.ros.org/

[3] Motion Strategy Library (MSL). [Online]. Available:

http://msl.cs.uiuc.edu/msl/

https://forge.cornell.edu/svn/repos/src/planning
http://www.ros.org/
http://msl.cs.uiuc.edu/msl/

